Author:
Hirk Rainer,Hornik Kurt,Vana Laura
Abstract
Abstract
Correlated ordinal data typically arises from multiple measurements on a collection of subjects. Motivated by an application in credit risk, where multiple credit rating agencies assess the creditworthiness of a firm on an ordinal scale, we consider multivariate ordinal regression models with a latent variable specification and correlated error terms. Two different link functions are employed, by assuming a multivariate normal and a multivariate logistic distribution for the latent variables underlying the ordinal outcomes. Composite likelihood methods, more specifically the pairwise and tripletwise likelihood approach, are applied for estimating the model parameters. Using simulated data sets with varying number of subjects, we investigate the performance of the pairwise likelihood estimates and find them to be robust for both link functions and reasonable sample size. The empirical application consists of an analysis of corporate credit ratings from the big three credit rating agencies (Standard & Poor’s, Moody’s and Fitch). Firm-level and stock price data for publicly traded US firms as well as an unbalanced panel of issuer credit ratings are collected and analyzed to illustrate the proposed framework.
Funder
Vienna University of Economics and Business
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献