Learning social networks from text data using covariate information

Author:

Yang XiaoyiORCID,Niezink Nynke M. D.,Nugent Rebecca

Abstract

AbstractAccurately describing the lives of historical figures can be challenging, but unraveling their social structures perhaps is even more so. Historical social network analysis methods can help in this regard and may even illuminate individuals who have been overlooked by historians, but turn out to be influential social connection points. Text data, such as biographies, are a useful source of information for learning historical social networks but the identifcation of links based on text data can be challenging. The Local Poisson Graphical Lasso model models social networks by conditional independence structures, and leverages the number of name co-mentions in the text to infer relationships. However, this method does not take into account the abundance of covariate information that is often available in text data. Conditional independence structure like Poisson Graphical Model, which makes use name mention counts in the text can be useful tools to avoid false positive links due to the co-mentions but given historical tendency of frequently used or common names, without additional distinguishing information, we may introduce incorrect connections. In this work, we therefore extend the Local Poisson Graphical Lasso model with a (multiple) penalty structure that incorporates covariates, opening up the opportunity for similar individuals to have a higher probability of being connected. We propose both greedy and Bayesian approaches to estimate the penalty parameters. We present results on data simulated with characteristics of historical networks and show that this type of penalty structure can improve network recovery as measured by precision and recall. We also illustrate the approach on biographical data of individuals who lived in early modern Britain between 1500 and 1575. We will show how these covariates affect the statistical model’s performance using simulations, discuss how it helps to better identify links for the people with common names and those who are traditionally underrepresented in the biography text data.

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3