Abstract
AbstractThe paper introduces an automatic procedure for the parametric transformation of the response in regression models to approximate normality. We consider the Box–Cox transformation and its generalization to the extended Yeo–Johnson transformation which allows for both positive and negative responses. A simulation study illuminates the superior comparative properties of our automatic procedure for the Box–Cox transformation. The usefulness of our procedure is demonstrated on four sets of data, two including negative observations. An important theoretical development is an extension of the Bayesian Information Criterion (BIC) to the comparison of models following the deletion of observations, the number deleted here depending on the transformation parameter.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献