Beyond texture: unveiling spiny crown-of-thorns starfish with multiresolution analysis

Author:

Dubey SatyamORCID,Nirmal Jagannath

Abstract

AbstractCoral reefs are essential ecosystems in the vast expanses of oceans, nurturing various forms of marine life within their vibrant and expansive structures. However, these underwater paradises suffer considerable threat from the population explosions of crown-of-thorns starfish (COTS), which detrimentally affect scleractinian corals across the Indo-Pacific region. This study addresses the early drawback of solely relying on texture analysis for COTS detection, recognizing the associated insufficiency due to variability in reef substrates. By integrating multiresolution analysis employing wavelet transform, edge information, and texture analysis using gray-level co-occurrence probability, this approach employs crucial Haralick features refined for pattern recognition. This enables a more detailed understanding of COTS traits, including the detection of the numerous sharp spines that cover their upper bodies. This approach considerably enhances classification reliability, making notable progress with an impressive accuracy of 95.00% using the eXtreme Gradient Boosting (XGBoost) Classifier. Moreover, this model streamlines processing requirements by increasing computational and memory efficiencies, making it more resource-efficient than the current models. This advancement enhances detection and opens avenues for early intervention and future research. Furthermore, integrating the model with underwater imagery could enable citizen science initiatives and autonomous underwater vehicle (AUV) surveys. Empowering trained volunteers and equipping AUVs with this technology could considerably expand coral reef monitoring efforts. Early COTS outbreak detection allows for shorter response times, potentially mitigating the damage and facilitating targeted conservation strategies.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3