Abstract
AbstractTesting a precise hypothesis can lead to substantially different results in the frequentist and Bayesian approach, a situation which is highlighted by the Jeffreys-Lindley paradox. While there exist various explanations why the paradox occurs, this article extends prior work by placing the less well-studied point-null-zero-probability paradox at the center of the analysis. The relationship between the two paradoxes is analyzed based on accepting or rejecting the existence of precise hypotheses. The perspective provided in this paper aims at demonstrating how the Bayesian and frequentist solutions can be reconciled when paying attention to the assumption of the point-null-zero-probability paradox. As a result, the Jeffreys-Lindley-paradox can be reinterpreted as a Bayes-frequentist compromise. The resolution shows that divergences between Bayesian and frequentist modes of inference stem from (a) accepting the existence of a precise hypothesis or not, (b) the assignment of positive measure to a null set and (c) the use of unstandardized p-values or p-values standardized to tail-area probabilities.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability