Guillotine cutting is asymptotically optimal for packing consecutive squares

Author:

Balogh János,Dósa György,Hvattum Lars Magnus,Olaj Tomas,Tuza Zsolt

Abstract

AbstractMore than half a century ago Martin Gardner popularized a question leading to the benchmark problem of determining the minimum side length of a square into which the squares of sizes $$1,2,\dots ,n$$ 1 , 2 , , n can be packed without overlap. Constructions are known for a certain range of n, and summing up the areas yields that a packing in a square of size smaller than $$N:= \!\sqrt{n(n+1)(2n+1)/6)} $$ N : = n ( n + 1 ) ( 2 n + 1 ) / 6 ) is not possible. Here we prove that an asymptotically minimal packing exists in a square of size $$N+cn+O(\!\sqrt{n})$$ N + c n + O ( n ) with $$c<1$$ c < 1 , and such a packing is achievable with guillotine-cuts. An improved construction is also given for the case where the constraint of guillotine cutting is dropped.

Funder

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Extending the activities of the HU-MATHS-IN Hungarian Industrial and Innovation Mathematical Service Network

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Business, Management and Accounting (miscellaneous)

Reference23 articles.

1. Bálint, V., Adamko, P.: Universal asymptotical results on packing of cubes. Stud. Univ. Žilina Math. Ser. 28, 1–4 (2016)

2. Buchwald, T., Scheithauer, G.: A 5/9 Theorem on Packing Squares into a Square. Preprint MATH-NM-04-2016. TU Dresden (2016). http://www.math.tu-dresden.de/scheith/ABSTRACTS/dREPRINTS/16-5-9-Theorem.pdf

3. Chalcraft, A.: Perfect square packings. J. Combin. Theory Ser. A 92(2), 158–172 (2000)

4. Coffman, E.G., Jr., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented two-dimensional packing algorithms. SIAM J. Comput. 9, 808–826 (1980)

5. Gardner, M.: Mathematical games: the problem of Mrs. Perkins’ quilt, and answers to last month’s puzzles. Sci. Am. 215(3), 264–272 (1966)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3