Plants’ competition under autotoxicity effect: an evolutionary game

Author:

Karagiannis-Axypolitidis NikolaosORCID,Panebianco Fabrizio,Bonanomi Giuliano,Giannino Francesco

Abstract

AbstractWe develop a $$2\times 2$$ 2 × 2 evolutionary matrix game to model vegetation dynamics due to the effect of autotoxicity. The phenomenon of autotoxicity refers to the rise in soil of negative conditions for plant performance induced by the plants themselves. Relating the Nash Equilibrium Strategies of the game to the stability of the equilibrium points of the induced population dynamics, we investigate under which conditions coexistence of low and highly sensitive to autotoxicity plants occurs and under which a monospecific population dominates the competition. Based on this classification, we investigate the optimal distribution of the two distinct types of plants in order to maximize the cumulative total fitness and determine if this distribution is stable. The primary outcome of this study is to analyze the necessary conditions for achieving the highest total fitness in both mixed and monospecific populations of low-sensitivity plants. In contrast, we argue that a monospecific population of highly sensitive plants can never maximize overall fitness.

Funder

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Business, Management and Accounting (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3