Abstract
AbstractWe describe a special class of quasi-equilibrium problems in metric spaces and propose a novel simple threshold descent method for solving these problems. Due to the framework, the convergence of the method cannot be established with the usual convexity or generalized convexity assumptions. Under mild conditions, the iterative procedure gives solutions of the quasi-equilibrium problem. We apply this method to scalar and vector generalized quasi-equilibrium problems and to some classes of relative optimization problems.
Funder
Università degli Studi di Milano - Bicocca
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Business, Management and Accounting (miscellaneous)
Reference10 articles.
1. Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Existence and solution methods for equilibria. Eur. J. Oper. Res. 227, 1–11 (2013)
2. Bianchi, M., Kassay, G., Pini, R.: Brezis pseudomonotone bifunctions and quasi-equilibrium problems via penalization. J. Global Optim. 82, 483–498 (2022)
3. Bianchi, M., Kassay, G., Pini, R.: Existence of equilibria via Ekeland’s principle. J. Math. Anal. Appl. 305, 502–512 (2005)
4. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 1–23 (1993)
5. Castellani, M., Giuli, M.: Ekeland’s principle for cyclically antimonotone equilibrium problems. Nonlinear Anal. 32, 213–228 (2016)