Constrained many-to-many point matching in two dimensions

Author:

Caraballo L. E.,Castro R. A.,Díaz-Báñez J. M.,Heredia M. A.,Urrutia J.,Ventura I.ORCID,Zaragoza F. J.

Abstract

AbstractIn the minimum-weight many-to-many point matching problem, we are given a set R of red points and a set B of blue points in the plane, of total size N, and we want to pair up each point in R to one or more points in B and vice versa so that the sum of distances between the paired points is minimized. This problem can be solved in $$O(N^3)$$ O ( N 3 ) time by using a reduction to the minimum-weight perfect matching problem, and thus, it is not fast enough to be used for on-line systems where a large number of tunes need to be compared. Motivated by similarity problems in music theory, in this paper we study several constrained minimum-weight many-to-many point matching problems in which the allowed pairings are given by geometric restrictions, i.e., a bichromatic pair can be matched if and only if the corresponding points satisfy a specific condition of closeness. We provide algorithms to solve these constrained versions in O(N) time when the sets R and B are given ordered by abscissa.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Ministerio de Ciencia e Innovación

Sistema Nacional de Investigadores

Universidad Nacional Autónoma de México

Universidad de Sevilla

Publisher

Springer Science and Business Media LLC

Reference20 articles.

1. Byrd, D., Crawford, T.: Problems of music information retrieval in the real world. Inf. Process. Manag. 38(2), 249–272 (2002)

2. Cornelis, O., Lesaffre, M., Moelants, D., Leman, M.: Access to ethnic music: advances and perspectives in content-based music information retrieval. Signal Process. 90(4), 1008–1031 (2010)

3. Mora, J., Gómez, F., Gómez, E., Díaz-Báñez, J.M.: Melodic contour and mid-level global features applied to the analysis of flamenco cantes. J. New Music Res. 45(2), 145–159 (2016)

4. Clifford, R., Christodoulakis, M., Crawford, T., Meredith, D., Wiggins, G.A.: A fast, randomised, maximal subset matching algorithm for document-level music retrieval. In: ISMIR 2006, 7th International Conference on Music Information Retrieval, Victoria, Canada, 8–12 October 2006, Proceedings, pp. 150–155 (2006)

5. Gudmundsson, J., Klein, O., Knauer, C., Smid, M.: Small Manhattan networks and algorithmic applications for the earth mover’s distance. In: Proceedings of the 23rd European Workshop on Computational Geometry, pp. 174–177 (2007)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3