On the exact separation of cover inequalities of maximum-depth

Author:

Catanzaro DanieleORCID,Coniglio StefanoORCID,Furini FabioORCID

Abstract

AbstractWe investigate the problem of separating cover inequalities of maximum-depth exactly. We propose a pseudopolynomial-time dynamic-programming algorithm for its solution, thanks to which we show that this problem is weakly $${\mathcal {N}}{\mathcal {P}}$$ N P -hard (similarly to the problem of separating cover inequalities of maximum violation). We carry out extensive computational experiments on instances of the knapsack and the multi-dimensional knapsack problems with and without conflict constraints. The results show that, with a cutting-plane generation method based on the maximum-depth criterion, we can optimize over the cover-inequality closure by generating a number of cuts smaller than when adopting the standard maximum-violation criterion. We also introduce the Point-to-Hyperplane Distance Knapsack Problem (PHD-KP), a problem closely related to the separation problem for maximum-depth cover inequalities, and show how the proposed dynamic programming algorithm can be adapted for effectively solving the PHD-KP as well.

Funder

Fonds De La Recherche Scientifique - FNRS

Université Catholique de Louvain

Fondation Louvain

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3