Abstract
AbstractBilevel problems are used to model the interaction between two decision makers in which the lower-level problem, the so-called follower’s problem, appears as a constraint in the upper-level problem of the so-called leader. One issue in many practical situations is that the follower’s problem is not explicitly known by the leader. For such bilevel problems with unknown lower-level model we propose the use of neural networks to learn the follower’s optimal response for given decisions of the leader based on available historical data of pairs of leader and follower decisions. Integrating the resulting neural network in a single-level reformulation of the bilevel problem leads to a challenging model with a black-box constraint. We exploit Lipschitz optimization techniques from the literature to solve this reformulation and illustrate the applicability of the proposed method with some preliminary case studies using academic and linear bilevel instances.
Funder
Deutsche Forschungsgemeinschaft
Universität Trier
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Business, Management and Accounting (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献