Author:
Bauschke Heinz H.,Borwein Jonathan M.,Wang Xianfu,Yao Liangjin
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Bauschke, H.H., Borwein, J.M., Wang, X., Yao L.: For maximally monotone linear relations, dense type, negative-infimum type, and Fitzpatrick–Phelps type all coincide with monotonicity of the adjoint, submitted; http://arxiv.org/abs/1103.6239v1 (2011)
2. Bauschke H.H., Combettes P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)
3. Borwein J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)
4. Borwein J.M.: Maximality of sums of two maximal monotone operators in general Banach space. Proc. Am. Math. Soc. 135, 3917–3924 (2007)
5. Borwein J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Representations for Maximal Monotone Operators of Type (D) in Banach Spaces;Journal of Optimization Theory and Applications;2024-06-04
2. Quasidensity: A Survey and Some Examples;Splitting Algorithms, Modern Operator Theory, and Applications;2019
3. Quasidense Monotone Multifunctions;Set-Valued and Variational Analysis;2017-08-04
4. Recent Progress on Monotone Operator Theory;Contemporary Mathematics;2015
5. Polar Subspaces and Automatic Maximality;Set-Valued and Variational Analysis;2013-06-22