Characterization and genome analysis of Escherichia phage fBC-Eco01, isolated from wastewater in Tunisia

Author:

Grami Emna,Badawy Shimaa,Kiljunen Saija,Saidi Neila,Skurnik MikaelORCID

Abstract

AbstractThe rise of antibiotic resistance in bacterial strains has led to vigorous exploration for alternative treatments. To this end, phage therapy has been revisited, and it is gaining increasing attention, as it may represent an efficient alternative for treating multiresistant pathogenic bacteria. Phage therapy is considered safe, and phages do not infect eukaryotic cells. There have been many studies investigating phage-host bacteria interactions and the ability of phages to target specific hosts. Escherichia coli is the causative agent of a multitude of infections, ranging from urinary tract infections to sepsis, with growing antibiotic resistance. In this study, we characterized the Escherichia phage fBC-Eco01, which was isolated from a water sample collected at Oued, Tunis. Electron microscopy showed that fBC-Eco01 phage particles have siphovirus morphology, with an icosahedral head of 61 ± 3 nm in diameter and a non-contractile tail of 94 ± 2 nm in length and 12 ± 0.9 nm in width. The genome of fBC-Eco01 is a linear double-stranded DNA of 43.466 bp with a GC content of 50.4%. Comparison to databases allowed annotation of the functions to 39 of the 78 predicted gene products. A single-step growth curve revealed that fBC-Eco01 has a latent period of 30 minutes and a burst size of 175 plaque-forming units (PFU) per infected cell. Genomic analysis indicated that fBC-Eco01 is a member of the subfamily Guernseyvirinae. It is most closely related to a group of phages of the genus Kagunavirus that infect Enterobacter, Raoultella, and Escherichia strains.

Funder

Tunisian Ministry of Higher Education and Scientific Research

Jane ja Aatos Erkon Säätiö

University of Helsinki including Helsinki University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Virology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3