A multiplex real-time reverse transcription polymerase chain reaction assay for differentiation of classical and variant II strains of avian infectious bronchitis virus

Author:

Ameen Sara M.ORCID,Adel Amany,Selim Abdullah,Magouz Asmaa,AboElKhair Mohammed,Bazid AbdelHamid H.

Abstract

AbstractIdentification of avian infectious bronchitis virus (IBV) genotypes is essential for controlling infectious bronchitis (IB) disease, because vaccines that differ from the circulating strains might not provide efficient cross-protection. In Egypt, IBV strain typing is a difficult process, due to the widespread distribution of four genotype lineages (GI-13, GI-23, GI-1, and GI-16), which may contribute to IBV vaccination failure. In this study, we developed a multiplex real-time quantitative reverse transcription polymerase chain reaction (mRT-qPCR) assay that targets highly conserved areas of the S1 gene in order to detect classical (G1) and Egyptian variant II (G23) strains in allantoic fluids and clinical samples. The viral genotyping technique was assessed using commercially available vaccines as well as local strains, and 16 field isolates were tested to investigate its clinical applicability. The assay was found to be specific for the detection of classical and VAR II strains and did not detect the VAR I strain or other avian pathogens such as Newcastle disease virus, avian influenza virus (H9N2 and H5N8), or infectious bursal disease virus. The results also showed that 28 out of 41 samples tested positive for IBV utilizing rt-qRT-PCR targeting the N gene and that 26 out of the 28 positive samples were genotyped by mRT-qPCR targeting the S1 gene, whereas the remaining two samples that were not genotyped were VAR 1 (4/91) and VAR I (793/B). Interestingly, the testing could identify combined infections in one sample, indicating a mixed infection with both genotypes. The real-time RT-PCR assay could detect viral RNA at concentrations as low as 102 EID50 /ml for both classical and variant II. This assay is rapid, specific, and sensitive. It appears to be a valuable tool for regular disease monitoring that can be used to differentiate as well as identify viruses.

Funder

Animal Health Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Virology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3