Inhibition of interferon I induction by non-structural protein NSs of Puumala virus and other vole-associated orthohantaviruses: phenotypic plasticity of the protein and potential functional domains

Author:

Binder Florian,Gallo Giulia,Bendl Elias,Eckerle Isabella,Ermonval Myriam,Luttermann Christine,Ulrich Rainer G.ORCID

Abstract

AbstractThe orthohantavirus Puumala virus (PUUV), which is transmitted by bank voles (Clethrionomys glareolus), and other vole-borne hantaviruses contain in their small (S) genome segment two overlapping open reading frames, coding for the nucleocapsid protein and the non-structural protein NSs, a putative type I interferon (IFN-I) antagonist. To investigate the role of NSs of PUUV and other orthohantaviruses, the expression pattern of recombinant NSs constructs and their ability to inhibit human IFN-I promoter activity were investigated. The NSs proteins of PUUV and related cricetid-borne orthohantaviruses showed strong inhibition of IFN-I promoter induction. We identified protein products originating from three and two methionine initiation codons in the NSs ORF of PUUV during transfection and infection, respectively. The three putative start codons are conserved in all PUUV strains analysed. Translation initiation at these start codons influenced the inhibitory activity of the NSs products, with the wild-type (wt) construct expressing two proteins starting at the first and second methionine and showing strong inhibition activity. Analysis of in vitro-generated variants and naturally occurring PUUV NSs proteins indicated that amino acid variation in the NSs protein is well tolerated, suggesting its phenotypic plasticity. The N-terminal 20-amino-acid region of the NSs protein was found to be associated with strong inhibition and to be highly vulnerable to amino acid exchanges and tag fusions. Infection studies using human, bank vole, and Vero E6 cells did not show obvious differences in the replication capacity of PUUV Sotkamo wt and a strain with a truncated NSs protein (NSs21Stop), showing that the lack of a full-length NSs might be compensated by its N-terminal peptide, as seen in transfection experiments. These results contribute to our understanding of virus-host interactions and highlight the importance of future innate immunity studies in reservoir hosts.

Funder

Bundesministerium für Bildung und Forschung

Umweltbundesamt

Friedrich-Loeffler-Institut

Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit

Publisher

Springer Science and Business Media LLC

Subject

Virology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3