Fabrication of Thin Walls with and without Close Loop Control as a Function of Scan Strategy Via Direct Energy Deposition

Author:

Ali NashitORCID,Tomesani Luca,Ascari Alessandro,Fortunato Alessandro

Abstract

AbstractDirect Energy Deposition (DED) is a technique used to fabricate metallic parts and is a subcategory of metal additive manufacturing. Despite of its vast advantages over traditional manufacturing the deployment at industrial level is still limited due to underlaying concerns of process stability and repeatability. In-situ monitoring, therefore, is indispensable while depositing via DED. The present experiment is a step towards enhancing our current understanding of the DED when coupled with a closed loop control system to control melt pool width for deposition of thin-walled structures, and as a function of scan strategy. 316L stainless steel powder was deposited on S235JR substrate. A total of 6 iterations are reported, out of many performed, of which 3 were without the closed loop control. Also, to understand the effect of scan strategy as a function of laser power. Two different scan strategies were employed for understanding of the issue i.e., unidirectional, and bidirectional. Apart from the geometrical consistency of the wall, microhardness, density calculations and microstructure were investigated. The geometric consistency was found to be almost perfect with the bidirectional scan strategy. In case of unidirectional scan strategy, the wall shows a negative slope along the other extreme regardless of the closed loop control system. Dilution zone shows the hardness greater than both the substrate and the wall. The specimens fabricated without the use of closed loop control were found to be denser than their counterparts. This was found to be true also in case of manual reduction of power during each layer.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Instrumentation,Nuclear and High Energy Physics,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3