Empirical Model for the Description of Weld Seam Geometry in Coaxial Laser Hot-Wire Deposition Welding Processes with Different Steel Wires

Author:

Budde LauraORCID,Biester Kai,Huse Michael,Lammers Marius,Hermsdorf Jörg,Overmeyer Ludger

Abstract

AbstractCladdings are used to protect areas of components that are exposed to particular chemical, physical or tribological stresses. The aim when developing a cladding process is to achieve a cladding with low waviness in order to reduce the amount of machining required. Computational models and FEA simulations can be used to determine process parameters for claddings with low rework including a prediction of the height and width of a single weld seam aswell as the development of welding strategies. In this paper empirical models describing the geometry of single weld seams on a substrate manufactured with a coaxial laser hot-wire cladding process are investigated for three steel wire materials and different welding parameters. The coordinates of surface points of the weld seams were detected using a laser scanning microscope and post-processed by a self-created script. In order to describe the cross sectional shape of the weld seams, the parameters of parabolic, cosinusiodal or circular arc model functions are derived from the surface data using a fitting algorithm. For the tested wire materials, an effect of the wire material on the shape of the weld seam was not observed. The investigations also show that regardless of the varied welding parameter set or wire material, a circular model function appears to be the most suitable model shape for describing the cross sectional weld seam geometry in coaxial laser metal deposition with hot-wire. The regression residua using a circular arc model function ranged from 18.9 $$\upmu$$ μ m to 34.6 $$\upmu$$ μ m, which indicates a good approximation.

Funder

Laser Zentrum Hannover e.V.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Instrumentation,Nuclear and High Energy Physics,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3