Abstract
AbstractHierarchical structures are promising geometries for superhydrophobic surfaces, however a processing method with a single laser light source that is capable of both one-pass and rapid processing has not been established. The purpose of this study was to propose a concept of direct laser processing of two-scale periodic structures exhibiting superhydrophobicity. We hypothesized that the molten material that occurs due to the expanding plasma and that is squeezed around the micro-holes could play an active role in the processing of two-scale periodic structures. Percussion drilling using a nanosecond pulsed laser (532 nm wavelength) was performed on a steel surface. Twenty four different test-pieces were prepared using pitch (16–120 μm), number of repetition shots (1–120), and fluence (2.49–20 J/cm2), as the parameters. As the results, micro-holes with bank-shaped outer rims were formed. The maximum apparent contact angle was 161.4° and the contact angle hysteresis was 4.2° for a pitch of 80 μm and 20 repetition shots. The calculated results for the apparent contact angles were consistent with the measured results. Finally, an equation for estimating the processing rate was proposed. We demonstrated that this direct processing method can achieve a maximum processing rate of 823 mm2/min.
Funder
Japan Society for the Promotion of Science
Endowed Course on Processing Based on Biomimetics, Shinshu University
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Instrumentation,Nuclear and High Energy Physics,Modelling and Simulation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献