Investigation of Effective Notch Stress at the Root of the Rib-to-Deck Weld in an OSD Box Girder Bridge Considering the Wheel Load Position

Author:

Uaje Mark Joel BañaresORCID,Murakoshi Jun

Abstract

AbstractFatigue cracks have been reported in orthotropic steel deck bridges under severe traffic conditions in Japan, particularly root-deck and bead cracks, which initiate from the root of the rib-to-deck weld. The local stress directly influencing crack initiation was investigated using a finite element model based on a section of an actual bridge with a high incidence of cracks. The analysis focused on the weld root at the floor beam intersection and the span center of the bridge section. The model was subjected to loading in the transverse and longitudinal direction of the bridge combined with various wheel load configurations. The effect on the local stress properties was analyzed using the effective notch stress approach. A load position slightly off-center of the U-rib resulted in peak stress at the study locations. Its principal stress direction angle around the notch suggests a root-deck type of crack initiation. Testing several pavement stiffnesses revealed that using an SFRC pavement resulted in a 76%–84% reduction of peak effective notch stress compared to asphalt pavement. Furthermore, varying weld configurations demonstrated that lowering the weld penetration rate could alter the local stress position, influencing the crack initiation direction.

Funder

Tokyo Metropolitan University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3