CFT Connections: State-of-the-art Report and Numerical Validation by 3D FEM

Author:

Wilches JoseORCID,Leon Roberto,Santa Maria Hernán,Graterol Anibal

Abstract

AbstractConnections between concrete filled members are common in tall buildings, bridges, and offshore structures because of their robust structural performance. While extensive research has been done on isolated concrete-filled structural members, relatively little research has been conducted on composite connection regions. This article first describes a database on experimental/analytical investigations on concrete-filled connections comprising 135 tests. It then develops a generic numerical model capable of capturing the entire range of behavior of these connections, including local buckling of the steel tubes and friction/contact resistance between steel and concrete. The model was calibrated against a single test and its performance was verified against three other very different tests. The results indicate that the four models can track well the strength and stiffness of the specimens up to ultimate and predict well different failure patterns. Comparisons of the experimental and numerical load-deformation curves show very good agreement in predicting the strength and deformations at which different behaviors arise, and that performance is controlled primarily by both the strength of the concrete and the confinement effect of the steel tube in the connection area.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3