Treatment of dental plaque biofilms using photodynamic therapy: a randomised controlled study

Author:

Alsaif A.ORCID,Tahmassebi J. F.,Wood S. R.

Abstract

Abstract Introduction Photodynamic therapy (PDT) is a treatment modality involving a dye that is activated by exposure to light of a specific wavelength in the presence of oxygen to form oxygen species causing localised damage to microorganisms. Aim To determine the most effective bactericidal incubation and irradiation times of erythrosine-based PDT on in vivo-formed dental plaque biofilms. Methods A randomised controlled study; 18-healthy adult participants wearing intraoral appliances with human enamel slabs to collect dental plaque samples in two separate periods of two weeks each for use in arm-1 and arm-2. These accumulated dental plaque samples were treated with PDT under different experimental conditions. Incubation times with photosensitiser (erythrosine) of 15 min and 2 min were used in arm-1 and arm-2, respectively, followed by light irradiation for either 15 min (continuous) or as a fractionated dose (5 × 30 sec). Following treatment, percentage reductions of total bacterial counts were compared between the different groups. In addition, confocal laser scanning microscopy (CLSM) and LIVE/DEAD® BacLight™ Bacterial Viability Kit were used to visualise the effect of PDT on in vivo-formed biofilms. Results Significant reductions in the percentage of total bacterial counts (~93–95%) of in vivo-formed biofilms were found when using either 2 min or 15min incubation times and applying 15 min continuous light. Although when applying fractionated light, there was more cell death when 15 min incubation time was used (~ 91%) compared with the 2 min incubation time (~ 64%). CLSM results supported these findings. Conclusion Improving the clinical usefulness of PDT by reducing its overall treatment time seems to be promising and effective in killing in vivo-formed dental plaque biofilms.

Publisher

Springer Science and Business Media LLC

Subject

Dentistry (miscellaneous),Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3