Evaluation of the antibacterial activity of cinnamon essential oil and its individual compounds on Aggregatibacter actinomycetemcomitans isolated from black extrinsic tooth stain: an in vitro study

Author:

Lotfy W. A.ORCID,Matar M. A.,Alkersh B. M.

Abstract

Abstract Aim Black extrinsic tooth stain (BETS) is a health challenge that commonly affects children. Aggregatibacter actinomycetemcomitans (Aa) presents in higher prevalence within the polymicrobial community of BETS. In this study, the anti-planktonic and anti-sessile activities of cinnamon essential oil (CEO) and its individual compounds against Aa were evaluated. The preventive effect of CEO and its active substances on BETS formation was also studied in vitro. Methods Aa was isolated from a preschool child with BETS and was identified based on the morphological characteristics, MALDI-TOF mass spectroscopy and 16S rRNA sequencing. The effect of CEO and its individual compounds on the growth kinetics of planktonic and sessile Aa cells as well as their antibacterial efficacy and their rate of bacterial killing were examined. The preventive effect of CEO and its active substances on the formation of BETS was evaluated using an ex vivo model. The data were analysed using one-way analysis of variance (ANOVA) and the significance level was set at p < 0.05. Results Out of eight individual compounds of CEO, only eugenol, cinnamaldehyde and α-methyl cinnamaldehyde showed anti-Aa activities. The values of the minimum inhibitory concentrations (MICs) were in the following order: CEO (421.5 mg/ml) > α-methyl cinnamaldehyde (26.37 mg/ml) > cinnamaldehyde (0.209 mg/ml) > eugenol (0.052 mg/ml). CEO, eugenol, cinnamaldehyde and α-methyl cinnamaldehyde, respectively, exhibited two-, four-, four- and eightfold increase of sessile MIC compared to their planktonic MIC. The growth kinetics of both planktonic and sessile Aa in the presence of CEO, eugenol, cinnamaldehyde and α-methyl cinnamaldehyde revealed a complete inhibition at the MICs and 5.3%–37.4% biofilm inhibition at sub-MICs. The time-killing study demonstrated that CEO, eugenol and cinnamaldehyde were capable of reducing the survival rate of both planktonic and sessile Aa cells after 15–20 and 25–30 min, respectively. However, α-methyl cinnamaldehyde showed a superior anti-planktonic to anti-biofilm activity. The daily incorporation of CEO, eugenol and cinnamaldehyde at their MICs for 14 days totally prevented the formation of BETS in the ex vivo model; however, in the case of α-methyl cinnamaldehyde, BETS was visually detectable after 10 days. Conclusion CEO and its individual compounds have marked antibacterial activity against Aa. The effective results against planktonic and sessile Aa within reasonable time indicate that they can be used to prevent BETS.

Funder

Pharos University

Publisher

Springer Science and Business Media LLC

Subject

Dentistry (miscellaneous),Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3