The in-situ exploration of Jupiter’s radiation belts

Author:

Roussos EliasORCID,Allanson Oliver,André Nicolas,Bertucci Bruna,Branduardi-Raymont Graziella,Clark George,Dialynas Konstantinos,Dandouras Iannis,Desai Ravindra T.,Futaana Yoshifumi,Gkioulidou Matina,Jones Geraint H.,Kollmann Peter,Kotova Anna,Kronberg Elena A.,Krupp Norbert,Murakami Go,Nénon Quentin,Nordheim Tom,Palmaerts Benjamin,Plainaki Christina,Rae Jonathan,Santos-Costa Daniel,Sarris Theodore,Shprits Yuri,Sulaiman Ali,Woodfield Emma,Wu Xin,Yao Zonghua

Abstract

AbstractJupiter has the most complex and energetic radiation belts in our Solar System and one of the most challenging space environments to measure and characterize in-depth. Their hazardous environment is also a reason why so many spacecraft avoid flying directly through their most intense regions, thus explaining how Jupiter’s radiation belts have kept many of their secrets so well hidden, despite having been studied for decades. In this paper we argue why these secrets are worth unveiling. Jupiter’s radiation belts and the vast magnetosphere that encloses them constitute an unprecedented physical laboratory, suitable for interdisciplinary and novel scientific investigations: from studying fundamental high energy plasma physics processes which operate throughout the Universe, such as adiabatic charged particle acceleration and nonlinear wave-particle interactions, to exploiting the astrobiological consequences of energetic particle radiation. The in-situ exploration of the uninviting environment of Jupiter’s radiation belts presents us with many challenges in mission design, science planning, instrumentation, and technology. We address these challenges by reviewing the different options that exist for direct and indirect observations of this unique system. We stress the need for new instruments, the value of synergistic Earth and Jupiter-based remote sensing and in-situ investigations, and the vital importance of multi-spacecraft in-situ measurements. While simultaneous, multi-point in-situ observations have long become the standard for exploring electromagnetic interactions in the inner Solar System, they have never taken place at Jupiter or any strongly magnetized planet besides Earth. We conclude that a dedicated multi-spacecraft mission to Jupiter is an essential and obvious way forward for exploring the planet’s radiation belts. Besides guaranteeing numerous discoveries and huge leaps in our understanding of radiation belt systems, such a mission would also enable us to view Jupiter, its extended magnetosphere, moons, and rings under new light, with great benefits for space, planetary, and astrophysical sciences. For all these reasons, in-situ investigations of Jupiter’s radiation belts deserve to be given a high priority in the future exploration of our Solar System. This article is based on a White Paper submitted in response to the European Space Agency’s call for science themes for its Voyage 2050 programme.

Funder

Max Planck Institute for Solar System Research

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference181 articles.

1. Alfonsi, L., Ambroglini, F., Ambrosi, G., Ammendola, R., Assante, D., Badoni, D., Belyaev, V.A., Burger, W.J., Cafagna, A., Cipollone, P., Consolini, G., Conti, L., Contin, A., Angelis, E.D., Donato, C.D., Franceschi, G.D., Santis, A.D., Santis, C.D., Diego, P., Durante, M., Fornaro, C., Guandalini, C., Laurenti, G., Laurenza, M., Lazzizzera, I., Lolli, M., Manea, C., Marcelli, L., Marcucci, F., Masciantonio, G., Osteria, G., Palma, F., Palmonari, F., Panico, B., Patrizii, L., Picozza, P., Pozzato, M., Rashevskaya, I., Ricci, M., Rovituso, M., Scotti, V., Sotgiu, A., Sparvoli, R., Spataro, B., Spogli, L., Tommasino, F., Ubertini, P., Vannaroni, G., Xuhui, S., Zoffoli, S., Cses-Limadou Collaboration: The HEPD particle detector and the EFD electric field detector for the CSES satellite. Radiat. Phys. Chem. 137, 187–192 (2017). https://doi.org/10.1016/j.radphyschem.2016.12.022

2. Anglin, J.D., Burrows, J.R., Mu, J.L., Wilson, M.D.: Trapped energetic ions in Jupiter’s inner magnetosphere. J. Geophys. Res. 102(A1), 1–36 (1997). https://doi.org/10.1029/96JA02681

3. Atwell, W., Townsend, L., Miller, T., Campbell, C.: A reassessment of Galileo radiation exposures in the Jupiter magnetosphere. Radiat. Prot. Dosim. 116(1-4), 220–223 (2005). https://doi.org/10.1093/rpd/nci009

4. Atzei, A., Wielders, A., Stankov, A., Falkner, P.: Overview of the esa jovian technology reference studies. https://sci.esa.int/web/future-missions-department/-/40866-jovian-studies-overview (2007)

5. Bagenal, F.: The magnetosphere of Jupiter: Coupling the equator to the poles. J. Atmos. Sol. Terr. Phys. 69(3), 387–402 (2007). https://doi.org/10.1016/j.jastp.2006.08.012

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3