Author:
Kruithof Gert,Bassa Cees,Bonati Irene,van Cappellen Wim,Doek Anne,Ebbendorf Nico,Gerbers Marchel,van Haarlem Michiel,Halfwerk Ronald,Holties Hanno,Kajuiter Simone,Kondratiev Vlad,Meulman Henri,Pizzo Roberto,Shimwell Timothy,Swinbank John
Abstract
AbstractThe LOw Frequency ARray (LOFAR) is a European radio telescope operating since 2010 in the frequency bands 10 - 80 MHz and 110 - 250 MHz. This article provides an analysis of the energy consumption and the carbon footprint of LOFAR. The approach used is a Life Cycle Analysis (LCA). We find that one year of LOFAR operations requires 3,627 MWh of electricity, 48,714 m3 gas and 135,497 liters of fuel. The associated carbon emission is 1,867 tCO2e/year. Results include the footprint stemming from operations of all LOFAR stations and central processing, but exclude scientific post-processing and activities. The electrical energy required for scientific processing is assessed separately. It ranges from 1% (standard imaging and time-domain), to 40% (wide field long baseline imaging) of the energy consumption for the observation. The outcome provides a transparent baseline in making LOFAR more sustainable and can serve as a blueprint for the analysis of other research infrastructures.
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献