MobilityDL: a review of deep learning from trajectory data

Author:

Graser AnitaORCID,Jalali AnahidORCID,Lampert JasminORCID,Weißenfeld AxelORCID,Janowicz Krzysztof

Abstract

AbstractTrajectory data combines the complexities of time series, spatial data, and (sometimes irrational) movement behavior. As data availability and computing power have increased, so has the popularity of deep learning from trajectory data. This review paper provides the first comprehensive overview of deep learning approaches for trajectory data. We have identified eight specific mobility use cases which we analyze with regards to the deep learning models and the training data used. Besides a comprehensive quantitative review of the literature since 2018, the main contribution of our work is the data-centric analysis of recent work in this field, placing it along the mobility data continuum which ranges from detailed dense trajectories of individual movers (quasi-continuous tracking data), to sparse trajectories (such as check-in data), and aggregated trajectories (crowd information).

Funder

HORIZON EUROPE Framework Programme

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Reference68 articles.

1. Altan D, Etemad M, Marijan D, Kholodna T (2022) Discovering Gateway Ports in Maritime Using Temporal Graph Neural Network Port Classification. arXiv:2204.11855

2. Andrienko G, Andrienko N, Bak P, Keim D, Kisilevich S, Wrobel S (2011) A conceptual framework and taxonomy of techniques for analyzing movement. J Vis Lang Comput 22(3):213–232. https://doi.org/10.1016/j.jvlc.2011.02.003. https://www.sciencedirect.com/science/article/pii/S1045926X11000139

3. Buijse BJ, Reshadat V, Enzing OW (2021) A Deep Learning-Based Approach for Train Arrival Time Prediction. In: Yin H, Camacho D, Tino P, Allmendinger R, Tallón-Ballesteros AJ, Tang K, Cho SB, Novais P, Nascimento S (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2021, vol 13113, pp 213–222. Springer International Publishing, Cham. series Title: Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-91608-4_22. https://link.springer.com/10.1007/978-3-030-91608-4_22,

4. Buroni G, Bontempi G, Determe K (2021) A tutorial on network-wide multi-horizon traffic forecasting with deep learning. In: Workshop Proceedings of the EDBT/ICDT 2021 Joint Conference. Nicosia, Cyprus. https://ceur-ws.org/Vol-2841/BMDA_6.pdf

5. Capobianco S, Forti N, Millefiori LM, Braca P, Willett P (2023) Recurrent Encoder-Decoder Networks for Vessel Trajectory Prediction With Uncertainty Estimation. IEEE Trans Aerosp Electron Syst 59(3):2554–2565. https://doi.org/10.1109/TAES.2022.3216823. https://ieeexplore.ieee.org/document/9946391/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3