Author:
Bai Yanbing,Su Jinhua,Zou Yulong,Adriano Bruno
Funder
Beijing Association for Science and Technology Golden Bridge Project Seed Fund
Renmin University of China
Publisher
Springer Science and Business Media LLC
Subject
Geography, Planning and Development,Information Systems
Reference50 articles.
1. Chen SW, Wang XS, Sato M (2016) Urban damage level mapping based on scattering mechanism investigation using fully polarimetric sar data for the 3.11 east japan earthquake. IEEE Transactions on Geoscience and Remote Sensing 54(12):6919–6929
2. Chen S-W, Sato M (2012) Tsunami damage investigation of built-up areas using multitemporal spaceborne full polarimetric sar images. IEEE Transactions on Geoscience and Remote Sensing 51(4):1985–1997
3. Lee J, Xu JZ, Sohn K, Lu W, Berthelot D, Gur I, Khaitan P, Koupparis K, Kowatsch B, et al (2020) Assessing post-disaster damage from satellite imagery using semi-supervised learning techniques. arXiv:2011.14004
4. Bai Y, Gao C, Singh S, Koch M, Adriano B, Mas E, Koshimura S (2017) A framework of rapid regional tsunami damage recognition from post-event terrasar-x imagery using deep neural networks. IEEE Geoscience and Remote Sensing Letters 15(1):43–47
5. Bai Y, Mas E, Koshimura S (2018) Towards operational satellite-based damage-mapping using u-net convolutional network: A case study of 2011 tohoku earthquake-tsunami. Remote Sensing 10(10):1626
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献