Wavelength, dose, skin type and skin model related radical formation in skin

Author:

Meinke M. C.,Busch L.,Lohan S. B.

Abstract

Abstract The exposure to sun radiation is indispensable to our health; however, a long-term and high exposure could lead to cell damage, erythema, premature skin aging, and promotion of skin tumors. An underlying pathomechanism is the formation of free radicals which may induce oxidative stress at elevated concentrations. Different skin models, such as porcine-, murine-, human- ex vivo skin, reconstructed human skin (RHS) and human skin in vivo, were investigated during and after irradiation using X- and L-band EPR spectroscopy within different spectral regions (UVC to NIR). The amount of radical formation was quantified with the spin probe PCA and the radical types were measured ex vivo with the spin trap DMPO. The radiation dose influences the types of radicals formed in the skin. While reactive oxygen species (ROS) are always pronounced at low doses, there is an increase in lipid oxygen species (LOS) at high doses. Furthermore, the radical types arise independent from the irradiation wavelength, whereas the general amount of radical formation differs with the irradiation wavelength. Heat pre-stressed porcine skin already starts with higher LOS values. Thus, the radical type ratio might be an indicator of stress and the reversal of ROS/LOS constitutes the point where positive stress turns into negative stress.Compared to light skin types, darker types produce less radicals in the ultraviolet, similar amounts in the visible and higher ones in the infrared spectral region, rendering skin type-specific sun protection a necessity.

Funder

bundesministerium für bildung und forschung

Charité - Universitätsmedizin Berlin

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Structural Biology,Biophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3