A sensitization strategy for highly efficient blue fluorescent organic light-emitting diodes
-
Published:2022-11-10
Issue:1
Volume:15
Page:
-
ISSN:2095-2759
-
Container-title:Frontiers of Optoelectronics
-
language:en
-
Short-container-title:Front. Optoelectron.
Author:
Duan Yalei,Guo Runda,Wang Yaxiong,Di Kaiyuan,Wang Lei
Abstract
AbstractHighly efficient blue fluorescent materials have recently attracted great interest for organic light-emitting diode (OLED) application. Here, two new pyrene based organic molecules consisting of a highly rigid skeleton, namely SPy and DPy, are developed. These two blue light emitters exhibit excellent thermal stability. The experiment reveals that the full-width at half-maximum (FWHM) of the emission spectrum can be tuned by introducing different amounts of 9,9-diphenyl-N-phenyl-9H-fluoren-2-amine on pyrene units. The FWHM of the emission spectrum is only 37 nm in diluted toluene solution for DPy. Furthermore, highly efficient blue OLEDs are obtained by thermally activated delayed fluorescence (TADF) sensitization strategy. The blue fluorescent OLEDs utilizing DPy as emitters achieve a maximum external quantum efficiency (EQE) of 10.4% with the electroluminescence (EL) peak/FWHM of 480 nm/49 nm. Particularly, the EQE of DPy-based device is boosted from 2.6% in non-doped device to 10.4% in DMAc-DPS TADF sensitized fluorescence (TSF) device, which is a 400% enhancement. Therefore, this work demonstrates that the TSF strategy is promising for highly efficient fluorescent OLEDs application in wide-color-gamut display field.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials
Reference48 articles.
1. Pu, Y.J., Satake, R., Koyama, Y., Otomo, T., Hayashi, R., Haruta, N., Katagiri, H., Otsuki, D., Kim, D.G., Sato, T.: Absence of delayed fluorescence and triplet-triplet annihilation in organic light emitting diodes with spatially orthogonal bianthracenes. J. Mater. Chem. C Mater. Opt. Electron. Devices 7(9), 2541–2547 (2019) 2. Cai, M., Auffray, M., Zhang, D., Zhang, Y., Nagata, R., Lin, Z., Tang, X., Chan, C.Y., Lee, Y.T., Huang, T., Song, X., Tsuchiya, Y., Adachi, C., Duan, L.: Enhancing spin-orbital coupling in deep-blue/blue TADF emitters by minimizing the distance from the heteroatoms in donors to acceptors. Chem. Eng. J. 420, 127591 (2021) 3. Zhao, C., Duan, L.: Review on photo-and electrical aging mechanisms for neutral excitons and ions in organic light-emitting diodes. J. Mater. Chem. C Mater. Opt. Electron. Devices 8(3), 803–820 (2020) 4. Song, X., Zhang, D., Zhang, Y., Lu, Y., Duan, L.: Strategically modulating carriers and excitons for efficient and stable ultrapure-green fluorescent OLEDs with a sterically hindered bodipy dopant. Adv. Opt. Mater. (2020) 5. Li, M., Wang, Y.F., Zhang, D., Duan, L., Chen, C.F.: Axially chiral TADF-active enantiomers designed for efficient blue circularly polarized electroluminescence. Angew. Chem. Int. Ed. Engl. 59(9), 3500–3504 (2020)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|