Probing fluorination promoted sodiophilic sites with model systems of F16CuPc and CuPc

Author:

Liu Yuan,Lian Xu,Xie Zhangdi,Yang Jinlin,Ding Yishui,Chen Wei

Abstract

AbstractSodium metal batteries (SMBs) are receiving broad attention due to the high specific capacity of sodium metal anodes and the material abundance on earth. However, the growth of dendrites results in poor battery performance and severe safety problems, inhibiting the commercial application of SMBs. To stabilize sodium metal anodes, various methods have been developed to optimize the solid electrolyte interphase (SEI) layer and adjust the electroplating/stripping behavior of sodium. Among the methods, developing anode host materials and adding electrolyte additives to build a protective layer are promising and convenient. However, the understanding of the interaction process between sodium metal and those organic materials is still limited, but is essential for the rational design of advanced anode hosts and electrolyte additives. In this study, we use copper(II) hexadecafluorophthalocyanine (F16CuPc), and copper(II) phthalocyanine (CuPc), as model systems to unravel the sodium interaction with polar functional groups by in-situ photoelectron spectroscopy and density functional theory (DFT) calculations. It is found that sodium atoms prefer to interact with the inner pyrrolic nitrogen sites of CuPc, while they prefer to interact with the outer aza bridge nitrogen atoms, owing to Na-F interaction at the Na/F16CuPc interface. Besides, for the both organic molecules, the central Cu(II) ions are reduced to Cu(I) ions by charge transfer from deposited sodium. The fluorine-containing groups are proven to promote the interaction process of sodium in organic materials, which sheds light on the design of functional interfaces in host materials and anode protective layers for sodium metal anodes. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Safety, Risk, Reliability and Quality

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3