Author:
Xu Shihao,Liu Xiaowei,Yu Zehua,Liu Kang
Abstract
AbstractNegative pressure in water under tension, as a thermodynamic non-equilibrium state, has facilitated the emergence of innovative technologies on microfluidics, desalination, and thermal management. However, the lack of a simple and accurate method to measure negative pressure hinders further in-depth understanding of the properties of water in such a state. In this work, we propose a non-contact optical method to quantify the negative pressure in micron-sized water voids of a hydrogel film based on the microscale mechanical deformation of the hydrogel itself. We tested three groups of hydrogel samples with different negative pressure inside, and the obtained results fit well with the theoretical prediction. Furthermore, we demonstrated that this method can characterize the distribution of negative pressure, and can thus provide the possibility of investigation of the flow behavior of water in negative pressure. These results prove this technique to be a promising approach to characterization of water under tension and for investigation of its properties under negative pressure.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials
Reference27 articles.
1. Azouzi, M.E.M., Ramboz, C., Lenain, J.F., Caupin, F.: A coherent picture of water at extreme negative pressure. Nat. Phys. 9(1), 38–41 (2013)
2. Dixon, H.H., Joly, J.: On the ascent of sap. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 186, 563–576 (1895)
3. Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., Hammel, H.T.: Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148(3668), 339–346 (1965)
4. Pockman, W.T., Sperry, J.S., O’Leary, J.W.: Sustained and significant negative water pressure in xylem. Nature 378(6558), 715–716 (1995)
5. Stroock, A.D., Pagay, V.V., Zwieniecki, M.A., Michele, H.N.: The physicochemical hydrodynamics of vascular plants. Annu. Rev. Fluid Mech. 46(1), 615–642 (2014)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献