Enhancing productivity and efficiency in conventional laser metal deposition process for Inconel 718 – Part II: advancing the process performance

Author:

Maffia SimoneORCID,Chiappini Federico,Maggiani Gianluca,Furlan Valentina,Guerrini Massimo,Previtali Barbara

Abstract

AbstractThis paper is the second part of a work focused on optimizing the performance of conventional Laser Metal Deposition (C-LMD) process for Inconel 718 (IN718). In Part I, through an extensive experimental campaign on single tracks, the interplay between process parameters and their impact on the deposition rate, powder catchment efficiency, and clad geometry is examined. The parameters investigated include laser power, scan speed, powder feed rate, and standoff distance. By systematically adjusting these parameters, the aim is to identify optimal conditions that maximize productivity while maintaining a favorable clad shape for multi-pass multi-layer depositions. Part II starts from the findings and results of Part I by continuing the optimization on thick wall structures. These are utilized to assess the effect of 3D geometrical process parameters, specifically hatch spacing and Z-step, on process performance and stability. Based on the findings, further optimization procedure is presented, pushing the boundaries of the C-LMD process for IN718. By fine-tuning the process parameters, the capability of the C-LMD process to deposit fully dense IN718 with a productivity of 1500 g/h and a powder catchment efficiency of 70% is demonstrated. These results highlight the potential of C-LMD as a viable manufacturing technique for efficiently fabricating large components. Overall, this study contributes to a deeper understanding of the relationship between process parameters and performance in C-LMD for IN718. The insights gained from this research can guide the development of efficient and cost-effective LMD strategies, facilitating the practical implementation of this process in various industries.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3