Manufacturing constrained shape optimisation of variable width flat web formed channels

Author:

Gong JieORCID,Ghabraie Kazem,Weiss Matthias,Sreenivas Achuth,Rolfe Bernard

Abstract

AbstractThe trend in automotive manufacturing towards lower volumes and an increased number of car variants combined with the need for forming higher strength metals to reduce weight has led to the implementation of alternative and flexible manufacturing methods. These have new manufacturing constraints compared to conventional stamping that change the part shapes that can be formed. This requires new methods for part shape optimisation. This study proposes a novel parametrisation for shape design that allows: 1) implementation of a gradient-based optimisation approach; and 2) taking manufacturing constraints into account. Our novel parameterisation can describe most long automotive structural parts using only a small number of design variables. The parts are described using multiple series of straight and curved connected profiles. We have uniquely conducted a detailed sensitivity analysis on the profiles to determine analytical solutions for the first order derivatives of the design variables with respect to the surface area/mass of a generic part. The profiles are also used to determine the final manufacturing strains in a part based on ideal forming. These ideal manufacturing strains can be compared to manufacturing process strain limits to determine the potential manufacturability of the part. The proposed parametrisation is applied to optimise a variable width channel formed by flexible roll forming. The channel is optimised to maximise the stiffness while maintaining both mass and manufacturability. In detail, the effectiveness and the general applicability of the established parametrisation technique and shape optimisation platform are demonstrated using three case studies of a flexible roll formed automotive S-rail channel part subjected to compression and bending loads. Furthermore, the manufacturability of the optimised structure is demonstrated by a forming model of the flexible roll forming process, where the model has been previously validated against experimental data. These examples show that the presented parametrisation and the associated shape optimiser can be successfully applied to increase part stiffness while reducing weight and maintaining manufacturability. The range of problems analysed demonstrates the flexibility and capability of the newly developed optimisation platform.

Funder

Deakin University

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3