Additively manufactured cure tools for composites manufacture

Author:

Valentine Max D. A.,Radhakrishnan Arjun,Maes Vincent K.,Pegg Elise C.,Valero Maria D. R.,Kratz James,Dhokia Vimal

Abstract

AbstractThis research presents a novel framework for the design of additively manufactured (AM) composite tooling for the manufacture of carbon fibre-reinforced plastic composites. Through the rigorous design and manufacture of 30 unique AM tools, the viability of a design for AM framework was evaluated through measuring the performance with respect to geometrical accuracy and thermal responsiveness, and simulating the tool specific stiffness. The AM components consisted of a thin layup facesheet, stiffened by a low density lattice geometry. These tools were successfully used to layup and cure small composite components. The tooling was highly thermally responsive, reaching above 93% of the applied oven heating rate and up to 17% faster heating rates compared to similar mass monolithic tools. The results indicate that thermal overshoot has a greater dependence on the lattice density while the heating rate was more sensitive to the facesheet thickness. Lattice densities of as little as 5% were manufactured and the best overall geometry was a graded gyroid lattice with thicker walls near the surface and thinner walls at the base, attached to a 0.7 mm thick facesheet. The outputs from this research can provide a new route to the design and manufacture of mould tools, which could have significant impacts in the composites sector with new, lighter, more energy efficient tooling.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3