Convolutional neural network–based classification for improving the surface quality of metal additive manufactured components

Author:

Abhilash P. M.ORCID,Ahmed Afzaal

Abstract

AbstractThe metal additive manufacturing (AM) process has proven its capability to produce complex, near-net-shape products with minimal wastage. However, due to its poor surface quality, most applications demand the post-processing of AM-built components. This study proposes a method that combines convolutional neural network (CNN) classification followed by electrical discharge-assisted post-processing to improve the surface quality of AMed components. The polishing depth and passes were decided based on the surface classification. Through comparison, polishing under a low-energy regime was found to perform better than the high-energy regimes with a significant improvement of 74% in surface finish. Also, lower energy polishing reduced the occurrences of short-circuit discharges and elemental migration. A 5-fold cross-validation was performed to validate the models, and the results showed that the CNN model predicts the surface condition with 96% accuracy. Also, the proposed approach improved the surface finish substantially from 97.3 to 12.62 μm.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3