Abstract
AbstractIn this contribution, the effectiveness of helical static mixers in different arrangements and flow configurations/regimes is explored. By means of a thorough numerical analysis, the application limits of helical static mixers for the heat transfer enhancement inside cooling channels of machine tools are provided. The numerical simulations were processed with the commercial finite volume Computational Fluid Dynamics (CFD) code, ANSYS Fluent 2020 R2. This study shows that there exists an optimal range of application for static mixers as heat exchange intensifier depending on the flow speed, the transmitted heat flow and the thermal conductivity of the tool. The investigations of this contribution are restricted to single-phase flow in circular cross-sections and straight channel geometries. As a representative application example for a machine tooling, the cooling of a simple injection mold is investigated. The research carried out reveals that the application of static mixing elements for enhancement of heat transfer is very effective, particularly for fluid flow with low to medium Reynolds numbers, close-contour cooling, high values of heat fluxes, and high thermal conductivity of the tooling material.
Funder
Bundesministerium für Bildung und Forschung
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献