Absorbance measurement for in situ process regime identification in laser processing

Author:

Wittemer MoritzORCID,Grünewald JonasORCID,Wudy KatrinORCID

Abstract

Abstract Laser melting can be conducted in two different process regimes, the conduction and the keyhole mode, which exhibit significantly different characteristics, dynamics, and stability and are highly sensitive to a magnitude of process parameters. Despite these differences and the resulting high relevance of the prevailing process regime for process development, the regime is commonly deduced after specimen testing. An identification of the regime parallel to the process could speed up the process development of, for example, laser beam welding or laser-based powder bed fusion of metals. Therefore, the possibility of an in situ regime identification under process-near conditions is the aim of these investigations. For this, the absorbance is measured in situ by using an integrating sphere on an in-house-developed test rig. This test rig can mimic real production process conditions to detect the characteristic change in the degree of absorption when switching between the process regimes. These measurements were conducted during experiments in which only the laser power was varied. A significant change in absorption was detected at a threshold laser power of 100 W, which correlates with the transition between the process regimes’ conduction and keyhole regime. This threshold was proven by subsequent identification analysis of micrographic cross sections. This correlation promises the possibility of fast in situ process regime identification under near-real production process conditions with the potential of accelerating process development.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3