Experimental and numerical investigation of the damage state of Ti-6Al-4V alloy sheet in the tensile test, hydraulic bulging, and hydroforming processes

Author:

Yapan Yusuf FurkanORCID,Korkmaz Habip Gökay,Toros Serkan,Türköz Mevlüt

Abstract

AbstractThere has not been any damage prediction using Johnson-Cook’s (JC) hardening and damage model in the hydraulic bulging (HB) and hydroforming (HF), which are the advanced manufacturing processes, of the Ti-6Al-4V (Ti64) alloy. In the presented study, the damage behavior of the Ti64 alloy sheet in the HB and HF processes was investigated both experimentally and numerically for the first time to address the existing research gap. In this context, firstly, tensile tests (TT) were carried out on samples with different stress triaxiality values at three different tensile speeds, and the fracture morphologies of the samples were examined to evaluate whether it was appropriate to use the JC hardening and damage model. Since the fracture surfaces generally exhibit a ductile fracture morphology and are affected by stress triaxiality and strain rate, it was determined that it would be appropriate to use the JC hardening model and damage criterion to predict the damage of the Ti64 alloy in finite element analysis (FEA). Then, JC model parameters were determined by fitting the stress-strain curve obtained from the FEA and experimental tensile tests. In the HB experiments, bulging height and thickness thinning were predicted by FEA with an accuracy of 97% and 96.85%, respectively. In the HF experiments, the experimental burst pressure, die inlet radius, and base radius were predicted correctly at a rate of 92.5%, 95.5%, and 97.8%, respectively. Also, the thickness of the sample showed good agreement with the FEA results. The fracture zones in each process exhibited good agreement with the experimental results. Thus, it has been demonstrated that the JC damage criterion can be successfully applied in FEA if the Ti64 titanium alloy is damaged in various processes.

Funder

Konya Technical University Scientific Research Projects Coordinatorship

Yıldız Technical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3