Author:
Lambiase Francesco,Scipioni Silvia Ilaria,Paoletti Alfonso
Abstract
AbstractThe present study is aimed at determining the local density of components made by fused deposition modeling (FDM) through non-destructive indentation tests. An experimental campaign was performed to assess such a relationship. Specimens were made varying the amount of material flow and the direction of deposition. The specimen’s dimension and weight were measured to determine the average density. The internal porosity due to uncomplete filling produced due to the deposition process was also assessed through cross-sectioning. Instrumented indentation tests were conducted on the samples to determine a relationship between the density and the slopes during the loading and unloading phases. The tests were performed using flat cylindrical indenters of different diameters. The results indicated that the density of the specimens was strongly influenced by the adopted material flow and the orientation during deposition. An empirical relationship was determined between the slopes measured during indentation tests and the density. Such a relationship is independent of the deposition orientation. The optimized procedure represents a valuable tool to determine the local density of components made by fused deposition modeling through non-destructive indentation tests.
Funder
Università degli Studi dell’Aquila
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Reference15 articles.
1. Li B et al (2022) Electron beam freeform fabrication of NiTi shape memory alloys: crystallography, martensitic transformation, and functional response. Mater Sci Eng A 843:143135
2. Ke WC et al (2022) Multi-layer deposition mechanism in ultra high-frequency pulsed wire arc additive manufacturing (WAAM) of NiTi shape memory alloys. Addit Manuf 50:102513
3. Rodrigues TA et al (2022) Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM). Mater Des 213:110270
4. Liao Y, Liu C, Coppola B, Barra G, Di Maio L, Incarnato L, Lafdi K (2019) Effect of porosity and crystallinity on 3D printed PLA properties. Polymers (Basel) 11(9)
5. Domingo-Espin M, Puigoriol-Forcada JM, Garcia-Granada A-A, Llumà J, Borros S, Reyes G (2015) Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts. Mater Des 83:670–677
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献