Anisotropy and mechanical properties of dissimilar Al additive manufactured structures generated by multi-layer friction surfacing

Author:

Rath Lars,Kallien Zina,Roos Arne,Santos Jorge F. dos,Klusemann Benjamin

Abstract

AbstractFriction surfacing (FS) is a solid-state layer deposition process for metallic materials at temperatures below their melting point. While the bonding of the deposited layers to the substrate is proven suitable for coating applications, so far the mechanical properties of additively manufactured stacks have not been systematically investigated. In particular, the effect of successive deposited FS layers, i.e., repetitive thermo-mechanical loading, on the interface properties as well as anisotropy and strength of the deposited stack is unknown. For this purpose, the mechanical properties of FS deposited multi-layer stacks from dissimilar aluminum alloys have been investigated, characterizing layer-to-layer as well as layer-to-substrate bonding interfaces via micro-flat tensile testing. Furthermore, directional dependencies in the stack and failure mechanisms are analyzed. The results show a homogeneous, fine-grained microstructure with average grain sizes between 4.2 and 4.6 μ m within the deposited material. The resulting tensile properties with no significant directional dependency present an ultimate tensile strength between 320 and 326 MPa exceeding the strength of the AA5083 H112 consumable base material. No difference was obtained in terms of layer-to-layer or layer-to-substrate interface strength. Furthermore, homogeneous hardness was observed within the deposited structure, which is in the range of AA5083 base material’s hardness of 91 HV. The results indicate that the FS process in conjunction with the material used is suitable for additively generated structures and highlight the potential of this solid-state layer deposition technology.

Funder

Helmholtz-Zentrum hereon GmbH

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3