Establishing Equal-Channel Angular Pressing (ECAP) for sheet metals by using backpressure: manufacturing of high-strength aluminum AA5083 sheets

Author:

Gruber MaximilianORCID,Illgen Christian,Lichte Felix,Hartmann Christoph,Frint Philipp,Wagner Martin F.-X.,Volk Wolfram

Abstract

AbstractSevere plastic deformation (SPD) processes offer the possibility of improving the mechanical properties of metallic materials by grain refinement. However, this great potential has so far mostly been applied on a laboratory scale or on small series. Equal-Channel Angular Pressing (ECAP) also enables to integrate the advantages in industrial processes with large output—so far, mainly for bars or thick plates. In this paper, we investigate the ECAP process for sheet metal. Preliminary investigations have shown that cracks form on the surface when aluminum AA5083 sheets are processed. To solve this problem, we determined the Johnson–Cook fracture criterion for the material and modeled the process numerically. The simulation was carried out with the superposition of a backpressure and subsequently implemented and validated experimentally. The semi-finished sheet metal products from the ECAP investigation were then mechanically characterized with microhardness measurements and tensile tests. In addition, the microstructure was investigated with Electron Back Scatter Diffraction (EBSD). Even comparatively small amounts of backpressure (10 MPa) already result in a significant suppression of the crack formation in the numerical and experimental investigations. The microhardness measurements indicate a more homogeneous strain distribution for a sufficient level of applied backpressure which enables the processing of crack-free sheets in multiple ECAP passes. As with ECAP of bulk materials, tensile tests on the processed sheets show a reduced elongation to failure (− 73%) but a significantly increased yield strength (+ 157%) compared to the initial condition of the material. Distinct substructures are found in the EBSD measurements and explain this behavior. The findings provide the basis for using ECAP on an application-oriented scale and demonstrate an advanced manufacturing method for the production of high-strength aluminum sheets.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3