Sub-zero milling of Ti-6Al-4V—impact of the cutting parameters on the resulting forces, tool wear, and surface quality

Author:

Gutzeit KevinORCID,Bulun Georgis,Stelzer Gerhard,Kirsch Benjamin,Seewig Jörg,Aurich Jan C.

Abstract

AbstractDue to an excellent ratio of high strength and low density, Ti-6Al-4V is suitable for many industrial applications, especially in the aerospace industry. However, Ti-6Al-4V is also characterized by a very low thermal conductivity and high chemical reactivity which is why the titanium alloy is considered to be a hard-to-cut material. Machining Ti-6Al-4V leads to high cutting temperatures, which leads to a rapidly progressing thermo-chemical induced tool wear. To reduce the thermal load and to enhance the cutting performance, suitable cooling strategies are a necessity. A novel, highly efficient cooling approach is to apply sub-zero metalworking fluids (MWF) at liquid state but at supply temperatures well below 0 °C. These sub-zero MWF inhibit high cooling effects due to their low supply temperature in superposition with a beneficial wetting behavior. In this work, the application of a sub-zero cooling strategy is investigated when milling Ti-6Al-4V. The influence of both down milling and up milling is investigated under a systematic variation of the cutting speed and feed per tooth. For comparison, the experiments are also conducted using a cryogenic CO2 cooling. The performance of both cooling strategies in dependence of the milling process is described on the basis of the occurring forces, the resulting tool wear, and the surface quality achieved. The results show that the sub-zero cooling can successfully improve the machinability of Ti-6Al-4V even at elevated cutting parameters and unfavorable cutting conditions. As a result, sub-zero milling clearly outperforms the cryogenic CO2 cooling, since less tool wear and an overall lower surface roughness are observed. Consequently, when using a sub-zero cooling strategy, higher metal removal rates, longer tool life, and better surface qualities are achievable.

Funder

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3