Electrical discharge drilling of blind holes with injection flushing dielectric and stepped electrodes

Author:

Mao Xuanyu,Wu Ge,Tran Minh,Yi Shuang,Ding SonglinORCID

Abstract

AbstractElectrical discharge drilling of blind holes has been a challenging task due to the inherent difficulties in removing debris from the discharging gap. This paper investigates the working mechanism and effects of new stepped electrodes which are used in conjunction with injection flushing in drilling deep blind holes. A series of theoretical simulations and comparative experiments were conducted using cylindrical electrodes and two types of stepped electrodes. Pulse waveforms were captured to analyse the discharge status. Surface topography and machining quality were analysed using scanning electron microscope (SEM) images. The machining performance was evaluated by studying the material removal rate (MRR) and tool wear ratio (TWR). Experiment results show that internal flushing caused the debris to circulate in the machining zone and led to abnormal discharges, disrupting the formation of the plasma channel. The MRR was increased by 75% and 82% when using cylindrical electrodes with pressures of 120 psi and 40 psi, respectively. In contrast, the MRR with injection flushing was about 80% of that without injection flushing when using stepped electrodes. Regardless of the type of electrode, the application of injection flushing resulted in the increase in the maximum effective machining depth.

Funder

Australian Research Council

Royal Melbourne Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3