Author:
Kovacev Nikolina,Li Sheng,Zeraati-Rezaei Soheil,Hemida Hassan,Tsolakis Athanasios,Essa Khamis
Abstract
AbstractRigorous emission regulations call for more efficient passive control catalysts for exhaust gas aftertreatment without affecting the internal combustion process and CO2 emissions. Although the state-of-art ceramic honeycomb substrate designs provide high surface area and a degree of flexibility for heat and mass transfer adaptations, additional emission reduction benefits can be achieved when more flexible designs to provide effective thermal management are introduced. The conventional cordierite honeycomb substrates are manufactured by extrusion; therefore, only substrates with straight channels can be fabricated. This study aims to highlight any design limitations of conventional substrates by employing additive manufacturing as the main method of manufacturing diamond lattice structures using DLP (digital light processing) technology. Both conventional substrates and diamond lattice structures are studied numerically and experimentally for flow through resistance and temperature distribution. Numerical predictions and experimental results showed good agreement. The results show the increase of the axial temperature distribution for diamond lattice structures and a significant decrease of the pressure drop (38–45%) in comparison with the benchmark honeycomb with similar surface area.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献