Uncovering acoustic signatures of pore formation in laser powder bed fusion

Author:

Tempelman Joshua R.,Mudunuru Maruti K.,Karra Satish,Wachtor Adam J.,Ahmmed Bulbul,Flynn Eric B.,Forien Jean-Baptiste,Guss Gabe M.,Calta Nicholas P.,DePond Phillip J.,Matthews Manyalibo J.

Abstract

AbstractWe present a machine learning workflow to discover signatures in acoustic measurements that can be utilized to create a low-dimensional model to accurately predict the location of keyhole pores formed during additive manufacturing processes. Acoustic measurements were sampled at 100 kHz during single-layer laser powder bed fusion (LPBF) experiments, and spatio-temporal registration of pore locations was obtained from post-build radiography. Power spectral density (PSD) estimates of the acoustic data were then decomposed using non-negative matrix factorization with custom $$\varvec{k}$$ k -means clustering (NMF$$\varvec{k}$$ k ) to learn the underlying spectral patterns associated with pore formation. NMF$$\varvec{k}$$ k returned a library of basis signals and matching coefficients to blindly construct a feature space based on the PSD estimates in an optimized fashion. Moreover, the NMF$$\varvec{k}$$ k decomposition led to the development of computationally inexpensive machine learning models which are capable of quickly and accurately identifying pore formation with classification accuracy of supervised and unsupervised label learning greater than 95% and 90%, respectively. The intrinsic data compression of NMFk, the relatively light computational cost of the machine learning workflow, and the high classification accuracy makes the proposed workflow an attractive candidate for edge computing toward in-situ keyhole pore prediction in LPBF.

Funder

Los Alamos National Laboratory

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3