Advanced CNC thread milling: a comprehensive canned cycle for efficient cutting of threads with fixed or variable pitch and radius

Author:

Omirou Sotiris,Charalambides Marios,Chasos Charalambos

Abstract

AbstractThis paper presents the design, implementation, and experimental validation of a novel canned cycle for CNC milling machines, enabling the precise and efficient cutting of threads with fixed or variable pitch and radius. Conventional canned cycles are limited to fixed pitch threads, restricting the versatility of CNC milling machines in thread machining applications.The development process involves integrating a sophisticated control algorithm into the CNC milling machine's software, giving the operator remarkable control over the thread cutting process. This algorithm allows the operator to choose between external or internal threads, set both initial and final radii, determine initial and final pitches, specify the number of turns, and select the left or right-hand thread type. Such flexibility enables the creation of threads with diverse geometries. Furthermore, the proposed canned cycle provides the capability to switch between roughing and finishing passes by adjusting the step motion along the prescribed helical curve.Simulation tests conducted under various threading cases clearly demonstrate the efficiency of the proposed canned cycle. These results showcase its capability to address a wide range of machining scenarios, offering practical solutions applicable across a spectrum of applications.

Funder

Frederick University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3