Laser pre-structure-assisted micro-milling of Ti6Al4V titanium alloy

Author:

Hojati Faramarz,Azarhoushang Bahman,Daneshi Amir,Biermann Dirk

Abstract

AbstractHigh flexibility of the micro-milling process compared to nontraditional methods has led to its growing application in manufacturing complex micro-parts with tight tolerances and high accuracies. However, difficulties such as tool deflection, size effect, and tool wear limit the application of micro-milling. In this regard, the role of laser-assisted machining (LAM) is highlighted to prevent mentioned issues through reduction of machining forces and providing the possibility for using higher feeds. Ti6Al4V as a hard-to-machine material is chosen as the workpiece material. Unlike traditional LAM, Ti6Al4V parts were structured using a picosecond laser before micro-milling. The influence of laser structuring at different structure densities on the reduction of machining forces was analyzed at two feeds of 10 and 50 µm/tooth at a constant cutting speed of 35 m/min. A remarkable reduction in cutting forces was observed at both feeds. Additionally, the role of structure density in cutting force reduction is highlighted.

Funder

Hochschule Furtwangen

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3