Copper additive manufacturing using MIM feedstock: adjustment of printing, debinding, and sintering parameters for processing dense and defectless parts

Author:

Singh Gurminder,Missiaen Jean-Michel,Bouvard Didier,Chaix Jean-Marc

Abstract

AbstractIn the present study, an additive manufacturing process of copper using extrusion 3D printing, solvent and thermal debinding, and sintering was explored. Extrusion 3D printing of metal injection moulding (MIM) feedstock was used to fabricate green body samples. The printing process was performed with optimized parameters to achieve high green density and low surface roughness. To remove water-soluble polymer, the green body was immersed in water for solvent debinding. The interconnected voids formed during solvent debinding were favorable for removing the backbone polymer from the brown body during thermal debinding. Thermal debinding was performed up to 500 °C, and ~ 6.5% total weight loss of the green sample was estimated. Finally, sintering of the thermally debinded samples was performed at 950, 1000, 1030, and 1050°C. The highest sintering temperature provided the highest relative density (94.5%) and isotropic shrinkage. Micro-computed tomography (μCT) examination was performed on green samples and sintered samples, and qualitative and quantitative analysis of the porosity confirmed the benefits of optimized printing conditions for the final microstructure. This work opens up the opportunity for 3D printing and sintering to produce pure copper components with complicated shapes and high density, utilizing raw MIM feedstock as the starting material.

Funder

University College Dublin

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3