MOSPPA: monitoring system for palletised packaging recognition and tracking

Author:

Castaño-Amoros Julio,Fuentes Francisco,Gil PabloORCID

Abstract

AbstractThe paper industry manufactures corrugated cardboard packaging, which is unassembled and stacked on pallets to be supplied to its customers. Human operators usually classify these pallets according to the physical features of the cardboard packaging. This process can be slow, causing congestion on the production line. To optimise the logistics of this process, we propose a visual recognition and tracking pipeline that monitors the palletised packaging while it is moving inside the factory on roller conveyors. Our pipeline has a two-stage architecture composed of Convolutional Neural Networks, one for oriented pallet detection and recognition, and another with which to track identified pallets. We carried out an extensive study using different methods for the pallet detection and tracking tasks and discovered that the oriented object detection approach was the most suitable. Our proposal recognises and tracks different configurations and visual appearance of palletised packaging, providing statistical data in real time with which to assist human operators in decision-making. We tested the precision-performance of the system at the Smurfit Kappa facilities. Our proposal attained an Average Precision (AP) of 0.93 at 14 Frames Per Second (FPS), losing only 1% of detections. Our system is, therefore, able to optimise and speed up the process of logistic distribution.

Funder

Smurfit Kappa Alicante (Iberoamericana) S.A

Universidad de Alicante

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3