Influence of the atmosphere and temperature on the properties of the oxygen-affine bonding system titanium-diamond during sintering

Author:

Denkena Berend,Bergmann Benjamin,Fromm Andreas,Klose Christian,Hansen Nils

Abstract

AbstractGrinding tools can be manufactured from metal, vitrified, and resin bond materials. In combination with superabrasives like diamond grains, metal-bonded tools are used in a wide range of applications. The main advantages of metal over vitrified and resin bonds are high grain retention forces and high thermal conductivity. This paper investigates the influence of the atmosphere and manufacturing parameters such as sintering temperature on the properties of titanium-bonded grinding layers. Titanium is an active bond material, which can increase the retention of diamond grains in metal-bonded grinding layers. This can lead to higher bond stress and, consequently, decreased wear of grinding tools in use when compared to other commonly used bond materials like bronze. The reason for this is the adhesive bond between titanium and diamond due to the formation of carbides in the interface, whereas bronze can only form a mechanical cohesion with diamond grains. However, when using oxygen-affine metals such as titanium, oxidizing effects could limit the strength of the bond due to insufficient adhesion between Ti-powder particles and the prevention of carbide formation. The purpose of this paper is to show the influence of the sintering atmosphere and temperature on the properties of titanium-bonded diamond grinding layers using the mechanical and thermal characterization of specimens. A higher vacuum (Δpatm = − 75 mbar) reduces the oxidation of titanium particles during sintering, which leads to higher critical bond stress (+ 38% @ Ts = 900 °C) and higher thermal conductivity (+ 3.4% @Ts = 1000 °C, Ta = 25 °C). X-ray diffraction measurements could show the formation of carbides in the cross-section of specimens, which also has a positive effect on the critical bond stress due to an adhesive bond between titanium and diamond.

Funder

Deutsche Forschungsgemeinschaft

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3