Hierarchical ensemble deep learning for data-driven lead time prediction

Author:

Aslan AyseORCID,Vasantha Gokula,El-Raoui Hanane,Quigley John,Hanson Jack,Corney Jonathan,Sherlock Andrew

Abstract

AbstractThis paper focuses on data-driven prediction of lead times for product orders based on the real-time production state captured at the arrival instants of orders in make-to-order production environments. In particular, we consider a sophisticated manufacturing system where a large number of measurements about the production state are available (e.g. sensor data). In response to this complex prediction challenge, we present a novel ensemble hierarchical deep learning algorithm comprised of three deep neural networks. One of these networks acts as a generalist, while the other two function as specialists for different products. Hierarchical ensemble methods have previously been successfully utilised in addressing various multi-class classification problems. In this paper, we extend this approach to encompass the regression task of lead time prediction. We demonstrate the suitability of our algorithm in two separate case studies. The first case study uses one of the largest manufacturing datasets available, the Bosch production line dataset. The second case study uses synthetic datasets generated from a reliability-based model of a multi-product, make-to-order production system, inspired by the Bosch production line. In both case studies, we demonstrate that our algorithm provides high-accuracy predictions and significantly outperforms selected benchmarks including the single deep neural network. Moreover, we find that prediction accuracy is significantly higher in the synthetic dataset, which suggests that there is complexity (i.e. subtle interactions) in industrial manufacturing processes that are not easily reproduced in artificial models

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3